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Abstract. Large spin systems as given by magnetic macromolecules or two-dimensional spin arrays rule
out an exact diagonalization of the Hamiltonian. Nevertheless, it is possible to derive upper and lower
bounds of the minimal energies, i.e. the smallest energies for a given total spin S. The energy bounds are
derived under additional assumptions on the topology of the coupling between the spins. The upper bound
follows from “n-cyclicity”, which roughly means that the graph of interactions can be wrapped round a
ring with n vertices. The lower bound improves earlier results and follows from “n-homogeneity”, i.e. from
the assumption that the set of spins can be decomposed into n subsets where the interactions inside and
between spins of different subsets fulfill certain homogeneity conditions. Many Heisenberg spin systems
comply with both concepts such that both bounds are available. By investigating small systems which can
be numerically diagonalized we find that the upper bounds are considerably closer to the true minimal
energies than the lower ones.

PACS. 75.10.Jm Quantized spin models – 75.50.Xx Molecular magnets – 75.50.Ee Antiferromagnetics –
75.40.Mg Numerical simulation studies

1 Introduction

Rigorous results on spin systems like the Marshall-Peierls
sign rule [1] and the famous theorems of Lieb et al. [2,3]
have sharpened our understanding of magnetic phenom-
ena. In addition such results can serve as a basis or source
of inspiration for the development of approximate models.
For example, the inequalities of Lieb and Berezin [4,5] re-
lating spectral properties of quantum systems to those of
their classical counterparts provide a foundation for clas-
sical or semi-classical treatments of spin systems.

In this article we will extend the body of rigorous re-
sults on Heisenberg spin systems by generalizing the no-
tion of “bi-partiteness”, which is fundamental for the find-
ings of Marshall et al. [1–3]. We will introduce two new
concepts which rest on the topological properties of the
interaction matrix connecting the spins of the systems.

The first concept, n-cyclicity, uses the property of
many spin systems that their “net” of interactions can
be wrapped round an n-cycle. The triangular lattice may
serve as an example, it can be mapped onto a triangle
in an oriented manner as if one would wrap it round the
triangle. In such cases an upper bound of the minimal
energies Emin in each subspace H(M) of total magnetic
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quantum number M can be derived for Heisenberg mod-
els and XXZ models in general.

The second concept which leads to lower bounds rests
on n-homogeneity, i.e. on the fact that the set of spins
can be decomposed into n subsets of equal size where the
interactions inside and between spins of different subsets
fulfill certain conditions.

Fortunately, many Heisenberg spin systems comply
with both concepts such that both bounds are available.
For all cases which were investigated it turns out that
the upper bounds are rather close to the true minimal
energies, whereas the lower bounds are not. Therefore, es-
pecially the upper bound can serve are a benchmark or
guideline for approximate methods like DMRG or varia-
tional methods in order to rate the achieved quality.

The resulting bounds improve earlier findings of refer-
ence [4–6] especially for frustrated spin systems.

The article is organized as follows. In Section 2 upper
bounds and the concept of n-cyclicity will be discussed,
in Section 3 lower bounds and n-homogeneity will be in-
troduced. Both sections start with subsections explaining
the idea followed by more mathematical subsections pre-
senting the mathematical tools. At the end of each section
the resulting bounds are given. Examples are provided in
Section 4. A more technical calculation is carried out in
Appendix A.
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2 Upper bounds

2.1 Idea

It is obvious from the Ritz variational principle that an
upper bound for the minimal energy can be provided if
an appropriate trial state can be found for which the en-
ergy expectation value is known analytically and rather
close to the exact ground state value. In the following we
will construct such trial states for subspaces H(M), i.e.
for total magnetic quantum number M . Starting point
is the magnon vacuum (M = Ns) which is mapped by
means of suitable powers of the total ladder operator into
the subspace H(M). Since the total ladder operator com-
mutes with the Heisenberg Hamilton operator this does
not change the energy of that state. In a second step we
assume a certain topological property of the spin array
namely that it can be wrapped round an n-cycle and con-
struct a generalized “Bloch operator” which is a unitary
operator that adds appropriate phases to the components
of the trial state. Utilizing the known action of the Bloch
operator onto the Hamiltonian we can evaluate the en-
ergy expectation value analytically which results in the
expression for the upper bound.

In order to motivate our definitions in the next subsec-
tion we recall the definition of a bi-partite spin system in
the case of constant coupling: It is required that the spin
sites can be grouped into +sites and −sites such that only
+− pairs are coupled but no ++ or −− pairs. We suggest
the following generalization: Assume that complex phase
factors eiφj can be attached to spin sites j such that only
constant phase differences |φj − φk| occur between adja-
cent (coupled) spin sites. This is the requirement needed
for the above-mentioned construction of the Bloch opera-
tor. The attachment of phase factors is no longer arbitrary
if there are “loops” in the coupling scheme of the spin sys-
tem, i.e. periodic sequences of adjacent spin sites. If only
even loops exist we may choose the phase differences to
be |φj − φk| = π and the system is bi-partite. However,
in the case of odd loops it becomes necessary to “wrap”
the loop around the complex unit circle and the resulting
phase differences will be integer fractions of 2π. We will
make this more precise in the next subsection employing
the language of graph theory.

2.2 Definition of n-cyclicity

In this section we consider systems with N spin sites with
spin s and constant anti-ferromagnetic coupling. Thus the
complete information about the coupling scheme is en-
coded in some (undirected) graph γ = (V , Γ ). The ver-
tices of γ are the spin sites, V = {1, . . . , N}, the set of
edges of γ consists of those pairs of sites which are cou-
pled and will be denoted by Γ . We make the convention
that 〈i, j〉 ∈ Γ iff 〈j, i〉 ∈ Γ and 〈i, i〉 /∈ Γ . Hence the
number of members of the set Γ , denoted by |Γ |, equals
twice the number of bonds. Further, we will consider ori-
entations on γ, denoted by γ+, i.e. we split Γ into disjoint
subsets Γ = Γ+∪Γ−, such that 〈i, j〉 ∈ Γ+ iff 〈j, i〉 ∈ Γ−.

3
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Fig. 1. The pentagon is 5-cyclic and also 3-cyclic (l.h.s.)
whereas the tetrahedron is not 3-cyclic (r.h.s.), because if the
four vertices of the tetrahedron are attached to the numbers
1, 2, 3 one number must repeat and occurs at adjacent vertices,
which does not happen in the 3-cycle.

Then the Hamiltonian of XXZ-type can be written in the
form

H = δ
∑

〈i,j〉∈Γ

s
(3)
i s

(3)
j +

∑
〈i,j〉∈Γ+

s+
i s−j +

∑
〈i,j〉∈Γ−

s+
i s−j (1)

≡ ∆ + G + G†, (2)

where δ > 0 and si denote the usual spin observables
at site i with components s

(µ)
i , µ = 1, 2, 3, and s±i ≡

s
(1)
i ± is

(2)
i . Of course, only the splitting (2) depends on

the orientation, not the Hamiltonian itself.
In order to define a suitable concept of n-cyclicity we

consider graph homomorphisms, i.e. maps between graphs,
such that vertices are mapped onto vertices and the corre-
sponding edges onto corresponding edges. Let Cn denote
the cyclic graph with n vertices which will be identified
with the nth roots of unity

eiα� ≡ exp
(

2πi�
n

)
, � = 0, . . . , n − 1 . (3)

Further C+
n will denote the cyclic graph with anti-

clockwise orientation.
Any graph γ (or the spin system itself) will be called

n-cyclic or having the cyclicity n iff there exists a graph
homomorphism

h : γ −→ Cn . (4)

In this case C+
n will induce an orientation on γ in an ob-

vious sense.
It is only in certain cases that different cyclicities n and

n′ mean an essential distinctness. This is because for n ≥ 4
any n-cyclic system is also (n−2)-cyclic since three succes-
sive vertices and the corresponding edges can be mapped
in a forward-backward-forward way, compare the l.h.s. of
Figure 1, which shows a homomorphism of a pentagon
onto a triangle, as an example. Each 2m-ring and hence
any 2m-cyclic system is n-cyclic for any positive integers
m, n, since it is 2-cyclic and C2 can be homomorphically
embedded into any n-cycle.

Hence it makes only sense to distinguish between even-
cyclic systems, which will be called 2-cyclic, and (2n+1)-
cyclic system with maximal integer n. If a spin system
is 2-cyclic in our sense it will be bi-partite in the sense of
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references [2,3], where, however, the theory also comprises
cases with different coupling constants.

We consider some more examples which illustrate the
definition of cyclicity. A triangular plane lattice with suit-
able periodic boundary conditions is 3-cyclic, a square
lattice or cubic lattice is 2-cyclic. The kagomé lattice is
3-cyclic but not 2-cyclic. 3-cyclicity is equivalent to 3-
colorability. Hence the octahedron, the dodecahedron, the
cuboctahedron, and the icosidodecahedron are 3-cyclic, cf.
[7], but the tetrahedron is not, see r.h.s. of Figure 1.

A natural basis for a matrix representation of H is pro-
vided by the product states |m 〉 = |m1 . . . mN 〉, −s ≤
mi ≤ s with

s
(3)
i |m 〉 = mi |m 〉 , (5)

and

s±i |m 〉 =√
s(s + 1) − mi(mi ± 1) |m1, . . . , mi ± 1, . . . , mN 〉 (6)

for all i ∈ {1, . . . , N}. The state |Ω 〉 ≡ | s, s, . . . , s 〉 will
be called the “magnon vacuum”. Further we define

a ≡
N∑

i=1

ai =Ns− M, ai = s− mi for all i ∈ {1, . . . , N}.
(7)

We also define a mapping ĥ of product states into complex
numbers which depends on the graph homomorphism (4)
by

ĥ(m) ≡
N∏

i=1

h(i)ai . (8)

Then it is easily shown that if 〈m|G|m′〉 	= 0 then ĥ(m) =
e2πi/nĥ(m′).

For any � = 0, . . . , N − 1 we define a unitary “Bloch
operator” (generalizing the corresponding definition for
spin rings in reference [8])

U� : H(M) −→ H(M) (9)

by
U�|m〉 = ĥ(m)�|m〉 (10)

and linear extension. Recall that α� = 2π�/n. Then the
following relations hold:

U †
� GU� = e−iα�G (11)

U †
� HU� = ∆ + cosα�(G + G†) − i sin α�(G − G†). (12)

If Emin(M) denotes the minimal energy eigenvalue within
the sector H(M) and |ϕ 〉 ∈ H(M) is an arbitrary nor-
malized state we have the obvious upper bound

Emin(M) ≤ 〈ϕ|H |ϕ〉 . (13)

The problem is to find a state |ϕ 〉 such that 〈ϕ|H |ϕ〉 can
be explicitly calculated and represents a close bound. To
this end we map the magnon vacuum |Ω 〉 by (S−)a into
H(M), which remains an eigenstate of H with the largest

eigenvalue in the Heisenberg case δ = 1, and change its
phases according to the Bloch operator. More precisely,
let

|ΩM 〉 ≡ CM (S−)a|Ω〉 , (14)

where CM is the positive normalization factor, compare
(52), ensuring 〈ΩM |ΩM 〉 = 1 and define

|ϕ 〉 ≡ |ϕM,� 〉 ≡ U�|ΩM 〉. (15)

Then we obtain

〈ΩM |∆|ΩM 〉 =
δ|Γ |
N

{
Ns2 − 2sa(2Ns − a)

2Ns − 1

}
. (16)

As it must be, this result has the obvious value δ|Γ |s2 for
a = 0 and remains unchanged under a ↔ 2Ns − a. The
proof of equation (16) is given in Appendix A.

Now consider

〈ϕ|H |ϕ〉 = 〈ΩM |U †
� HU�|ΩM 〉 (17)

= 〈ΩM |∆ + cosα�(G + G†)|ΩM 〉 (18)

= cosα�〈ΩM |∆
δ

+ (G + G†)|ΩM 〉 (19)

+(1 − cosα�

δ
)〈ΩM |∆|ΩM 〉

= |Γ |s2 cosα� (20)

+(1 − cosα�

δ
)
δ|Γ |
N

(
Ns2 − 2sa(2Ns− a)

2Ns − 1

)
.

In line (18) we used (12) and the fact that |ΩM 〉 and G
are real in the product basis of the |m〉 whence 〈ΩM |(G −
G†)|ΩM 〉 = 0. Equation (20) follows by equation (16) and
the observation that ∆

δ + (G + G†) is a Heisenberg Hamil-
tonian which has the eigenstate |ΩM 〉 with eigenvalue
|Γ |s2.

For spin rings and a = 1, |ϕ 〉 is nothing else but the
relative ground state. Generally for spin rings, |ϕ 〉 has
the same shift quantum number as the relative ground
state [9].

2.3 Analytical expression for the upper bound

The best bound for Emin(M) is obtained if cosα� in (20)
is as low as possible, i.e. � = n

2 and cosα� = −1 for even
n and � = n±1

2 for odd n. Therefore the upper bound is
given by

Emin(M) ≤ c|Γ |s2+(1− c

δ
)
δ|Γ |
N

(
Ns2 − 2sa(2Ns− a)

2Ns− 1

)
,

(21)
where c = −1 in the case of even n and c = − cos π

n for
odd n. Let δ = 1 and Ns be integer. Then the total ground
state lies in the sector M = 0. In this case we obtain

Emin(0) ≤ c|Γ |s2 +
(−1 + c)|Γ |s2

2Ns − 1
, (22)

which improves the upper Berezin-Lieb bound Eclassical
min s2,

see [4,5], if c|Γ | = Eclassical
min .
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3 Lower bounds

3.1 Idea

For the lower bound to be derived in the following section
the interaction matrix J ≡ (Jµν) describing the coupling
between spins at sites µ and ν must have certain homo-
geneity properties. The matrix must be symmetric and
must have constant row sum. This alone is sufficient to
derive some lower bounds [6], which can be improved us-
ing the topological structure of the interactions, as will be
shown in the following.

The derivation works by constructing another “aver-
aged” Hamiltonian having an analytically diagonalizable
interaction matrix J̃, which nevertheless has only eigenval-
ues already present for the original interaction matrix J.
Since, by construction, J ≥ J̃, this relation also holds for
the related Hamiltonians, and we arrive at a lower bound.
Extending this idea the obtained lower bounds could be
improved for particular systems. However, in this article
we will confine ourselves to deriving bounds for general
classes of systems.

Using the topological structure of the interactions will
further enable us to determine the degeneracy of some
eigenvalues of J and therefore improve the calculations of
reference [6] where this information was not exploited.

3.2 Definition of n-homogeneity

The Hamiltonian used in this section is different from that
of the previous section and assumed to be of the form

H =
∑
µν

Jµνsµ · sν . (23)

The matrix J of coupling constants Jµν is assumed to be
symmetric and having constant row sums j. The latter
property can be viewed as a kind of gauge condition, since
adding a diagonal matrix with vanishing trace to J does
not change the Hamiltonian (23), see reference [10].

Being symmetrical, J has a complete set of (ordered)
eigenvalues j1, . . . , jN . One of them is the row sum j with
1 ≡ 1√

N
(1, 1, . . . , 1) as the corresponding eigenvector. Let

J′ denote the matrix J restricted to the subspace orthogo-
nal to 1, and jmin the smallest eigenvalue of J′. jmin may
be m-fold degenerate. Further, we will denote the αth nor-
malized eigenvector of J by (c1α, . . . , cNα), i.e.∑

ν

Jµνcνα = jαcµα ,
∑

µ

cµαcµβ = δαβ

α, β, µ = 1, . . . , N , (24)

where we also allow for the possibility to choose complex
eigenvectors. Sums over α = 1, . . . , N excluding αj will be
denoted by

∑′, where αj denotes the index (within the
ordered set of all eigenvalues) of the eigenvalue j belonging
to the eigenvector 1.

For later use we will consider a transformation of the
spin observables analogous to the transformation onto the
eigenbasis of J and define

T α≡
∑

µ

cµαsµ, and Qα ≡ T †
α · T α ,

α = 1, . . . , N. (25)

The inverse transformation then yields

sµ =
∑

α

cµαT α, µ = 1, . . . , N . (26)

In particular, T αj = S/
√

N . It then follows directly from
the definitions that

Ns(s + 1) =
∑

µ

(sµ)2 =
∑

α

Qα =
1
N

S2 +
∑

α

′ Qα, (27)

H =
∑

µναβ

JµνcµαcνβT †
α · T β =

∑
β

jβQβ

=
j

N
S2 +

∑
β

′ jβQβ. (28)

For a later use we also need a relation between Hamiltoni-
ans with different coupling matrices. Therefore, let H and
H̃ be two Hamiltonians of the form (23) with coupling ma-
trices J and J̃, such that J ≥ J̃. Then H ≥ H̃ . As usual the
ordering “≥” of operators is defined by the corresponding
inequality for arbitrary expectation values. Since H de-
pends linearly on J it suffices to show that J ≥ 0 implies
H ≥ 0. But this is obvious in view of (28): H =

∑
β jβQβ

with jβ ≥ 0 and Qβ ≥ 0.
Next we turn to the suitable definition of n-

homogeneity. Let the set of spin sites {1, . . . , N} be di-
vided into n disjoint subsets of equal size m, {1, . . . , N} =⋃n

ν=1 Aν , such that the coupling constants within each Aν

are ≤ 0, but ≥ 0 between Aν and Aµ for ν 	= µ. Moreover,
the partial row sums are assumed to be constant:∑

b∈Aµ

Jab =
{

jin if a ∈ Aµ

jex if a 	∈ Aµ
. (29)

A spin system satisfying the assumptions of this section
will be called n-homogeneous, see [1–3]. Note that this no-
tion is incommensurable to n-cyclicity defined in the pre-
vious section. However, certain rings, the triangular lat-
tice, the kagomé lattice, and the icosidodecahedron satisfy
both definitions. A necessary condition for nearest neigh-
bor Heisenberg systems to be n-homogeneous is that the
number of nearest neighbors, which is assumed to be con-
stant, is divisible by (n − 1). Actually, spin rings of even
N are 2-homogeneous, rings of odd N are 3-homogeneous
if N is divisible by 3. n-homogeneous Heisenberg rings do
not exist for n > 3 because they do not fulfill the homo-
geneity condition (29).

We recall that 1 = 1√
N

(1, 1, . . . , 1) is an eigenvector of
J with eigenvalue j. Due to n-homogeneity there are, after
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a suitable permutation of the spin sites, further eigenvec-
tors of the form

u(k) = (m : 1, m : ρk, m : ρ2k, . . . , m : ρ(n−1)k),
k = 1, . . . , n − 1, (30)

where (m : x, . . .) denotes the m-fold repetition of the
entry x, and ρ ≡ e2πi/n. The corresponding eigenvalues
are jk = jin+jex

∑n−1
p=1 ρpk = jin−jex, hence they coalesce

into one (n − 1)-fold degenerate eigenvalue. By applying
the theorem of Geršgorin (cf. [11], 7.2) this eigenvalue is
shown to be the smallest one jmin.

Next we construct a coupling matrix J̃ with the same
eigenspaces as J but only three different eigenvalues. It
has the block structure

J̃ =


A C C . . .
C A C . . .
C C A . . .
...

...
...

...

 , (31)

where A and C are m × m-matrices of the form

A =


β −α −α . . .
−α β −α . . .
−α −α β . . .
...

...
...

...

 , C =


γ γ γ . . .
γ γ γ . . .
γ γ γ . . .
...

...
...

...

 . (32)

The three eigenvalues of J̃ are

̃ = β − (m − 1)α + (N − m)γ, (33)
̃min = β − (m − 1)α − mγ, (34)

̃2 = α + β (35)

with degeneracies 1, n− 1 and N − n, resp. By choosing

α =
1
N

(nj2 − j − (n − 1)jmin), (36)

β =
1
N

((N − n)j2 + j + (n − 1)jmin), (37)

γ =
j − jmin

N
, (38)

one obtains

̃ = j, ̃min = jmin, ̃2 = j2 . (39)

j2 is the remaining smallest eigenvalue of J′ after eliminat-
ing (n− 1)-times jmin from the set of eigenvalues. Thus it
can happen that j2 = jmin if jmin is more than (n−1)-fold
degenerate.

Let us write SA ≡ ∑
a∈A sa for any subset A ⊂

{1, . . . , N}. We conclude

H ≥ H̃ = −α

(∑
ν

S2
Aν

)
+ (α + β)Ns(s + 1)

+ γ

(
S2 −

∑
ν

S2
Aν

)
(40)

≥ γS(S + 1) − (α + γ)n
N

n
s(

N

n
s + 1)

+ (α + β)Ns(s + 1). (41)

Fig. 2. Upper and lower bounds of Emin(S) for Heisenberg
spin rings with N = 6 and s = 1/2 (top) as well as s = 5/2
(bottom). The solid curves display the bounds for the minimal
energies considering 2-cyclicity (s = 1/2 : ε = 0.16; s = 5/2 :
ε = 0.05) and 2-homogeneity (s = 1/2 : ε = 0.28; s = 5/2 : ε =
0.07).

3.3 Analytical expression for the lower bound

Hence we obtain for the lower bound

E ≥ j − jmin

N
S(S + 1) + Njmins(s + 1)

+(N − n)(j2 − jmin)s . (42)

Since j2−jmin ≥ 0 the bound (42) is the better, the smaller
n is. This is in contrast to the upper bound considered in
the previous section, which is improved for large odd n.

4 Examples

In the following examples we calculate the energy eigen-
values by numerical methods as well as lower and upper
bounds. All examples are Heisenberg spin systems where
the total spin S is a good quantum number. It turns out
that S → Emin(S) is always a monotonically increas-
ing function, hence we need not to distinguish between
Emin(S) and Emin(M).

In order to judge the quality of the bounds we provide
the deviation of the best upper and lower bound from
the exact ground state energy in relation to the energy
difference between antiferromagnetic and ferromagnetic
ground state, i.e.

ε =
|Ebound,0 − E0|
E(Ns) − E0

· (43)

The first example we would like to consider is a Heisen-
berg spin ring with N = 6 and s = 1/2 as well as s = 5/2.
Figure 2 shows the numerically determined energy eigen-
values (dashes) as a function of total spin S. The solid
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Fig. 3. Upper and lower bounds of Emin(S) for Heisenberg
spin rings with N = 9 and s = 1/2 (top) as well as s =
3/2 (bottom). The solid curves display the upper bounds for
the minimal energies considering 9-cyclicity (s = 1/2 : ε =
0.20; s = 3/2 : ε = 0.09), the dashed curves do the same for
3-homogeneity (s = 1/2 : ε = 0.26; s = 3/2 : ε = 0.10).

curves display the bounds for the minimal energies con-
sidering 2-cyclicity and 2-homogeneity.

As a second example we take a frustrated Heisenberg
ring with N = 9 and s = 1/2 as well as s = 3/2. The
results are presented in Figure 3. The solid curves display
the upper bounds for the minimal energies considering 9-
cyclicity, the dashed curves do the same for 3-homogeneity.
Without using the concept of n-homogeneity the lower
bounds are much poorer for frustrated systems [6].

Another example, an icosidodecahedral Heisenberg
spin system, is related to magnetic molecules, which can
be synthesized in such structures. One species is given
by {Mo72Fe30}, a molecule where 30 Fe3+ paramagnetic
ions (s = 5/2) occupy the sites of a perfect icosidodec-
ahedron [12] and interact via isotropic nearest-neighbor
antiferromagnetic Heisenberg exchange [13]. Not much
is known about the spectrum of such giant structures
since the Hilbert space assumes a very large dimension
of 630 ≈ 1023. So far only DMRG calculations could ap-
proximate the minimal energies [14].

Figure 4 shows as dashes on the l.h.s. the minimal
energies for s = 1/2 which are determined numerically
by J. Richter with a Lánczos method [15,16] and on the
r.h.s. the minimal DMRG energies [14]. The icosidodec-
ahedral Heisenberg spin system is 3-cyclic as well as 3-
homogeneous. The corresponding bounds are displayed by
solid curves. Especially the upper bound for the case of
s = 5/2 is very close to the “true” (DMRG) minimal en-
ergies and thus could be used to justify approximations

Fig. 4. Upper and lower bounds of Emin(S) for Heisenberg
spin systems with icosidodecahedral structure, i.e. N = 30
and s = 1/2 (top) as well as s = 5/2 (bottom). The solid
curves display the bounds for the minimal energies considering
3-cyclicity (s = 1/2 : ε = 0.18; s = 5/2 : ε = 0.03) and 3-
homogeneity (s = 1/2 : ε = 0.36; s = 5/2 : ε = 0.10).

of the low-lying spectrum as used in reference [17]. The
lower bounds are worse than expected, but this behavior
is explained by the 10-fold degeneracy of jmin, therefore
j2 = jmin, and the last term in (42) yields zero, unfortu-
nately.

The last example discusses the triangular spin lattice
which is one of the frustrated two-dimensional spin sys-
tems. The triangular spin lattice is 3-homogeneous and
3-cyclic, if the periodic boundary conditions are suitably
chosen. Figure 5 displays the energy levels for N = 12 and
s = 1/2 (l.h.s.) as well as s = 1 (r.h.s.). The bounds of
Emin(S) are given by solid curves. In both cases the upper
bound is very close to the exact minimal energies.

For the thermodynamic limit N → ∞ of the triangular
lattice with δ = 1 we rewrite the bounds by introducing
a continuous spin variable Sc = S/N running from 0 to
s and using j = 6, jmin = −3 with twofold degeneracy,
and limN→∞ j2 = −3. After dividing by N the resulting
bounds are separated only by 3s:

9S2
c − 3s2 − 3s ≤ lim

N→∞
Emin(S)

N
≤ 9S2

c − 3s2 . (44)

We thank Johannes Richter for fruitful discussions.
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Fig. 5. Upper and lower bounds of Emin(S) for the triangular
spin lattice with N = 12 and s = 1/2 (top) as well as s = 1
(bottom). The solid curves display the bounds for the minimal
energies considering 3-cyclicity (s = 1/2 : ε = 0.09; s = 1 : ε =
0.05) and 3-homogeneity (s = 1/2 : ε = 0.34; s = 1 : ε = 0.19).

Appendix A: Proof of equation (16)

For easy readability we repeat equation (16)

〈ΩM |∆|ΩM 〉 =
δ|Γ |
N

{
Ns2 − 2sa(2Ns− a)

2Ns − 1

}
. (45)

Since ΩM is invariant w. r. t. arbitrary permutations of
spin sites it suffices to choose ∆ = s

(3)
1 s

(3)
2 and to multiply

the result for 〈ΩM |∆|ΩM 〉 by δ|Γ |. We note that[
∆, S−] = −(s(3)

1 s−2 + s−1 s
(3)
2 ), (46)

and [[
∆, S−] , S−] = 2s−1 s−2 , (47)

but higher commutators vanish. Hence[
∆, (S−)a

]
= a(S−)a−1

[
∆, S−]

+
(

a

2

)
(S−)a−2

[[
∆, S−] , S−] . (48)

Further we define λ(a, k) by

(S+)a(S−)a(S−)k |Ω 〉 = λ(a, k)(S−)k |Ω 〉 . (49)

Using S+S− = S2−S(3)(S(3)−1) one derives the recursion
relation

λ(a + 1, k) = (2Ns − a − k)(a + k + 1)λ(a, k)· (50)

Together with λ(0, k) = 1 it can be solved and yields

λ(a, k) =
(2Ns − k)!

(2Ns − a − k)!
(a + k)!

k!
. (51)

Obviously,

C2
M = λ(a, 0)−1 =

(2Ns − a)!
(2Ns)! a!

, (52)

hence

C2
Mλ(a−1, 1) =

(2Ns − a)!
(2Ns)! a!

(2Ns − 1)! a!
(2Ns − a)! 1!

=
1

2Ns
, (53)

and

C2
Mλ(a − 2, 2) =

(2Ns− a)!
(2Ns)! a!

(2Ns − 2)! a!
(2Ns − a)! 2!

=
1

4Ns(2Ns− 1)
· (54)

Now we are prepared to calculate 〈ΩM |∆|ΩM 〉:

〈ΩM |∆|ΩM 〉 = C2
M 〈ΩM |(S−)a∆ +

[
∆, (S−)a

] |Ω〉 (55)

= s2 + aC2
M 〈ΩM |(S−)a−1

[
∆, S−] |Ω〉 (56)

+
(

a

2

)
C2

M 〈ΩM |(S−)a−2
[[

∆, S−] , S−] |Ω〉

= s2 + aC2
M 〈(S+)a−1(S−)a−1S−Ω| [∆, S−] |Ω〉 (57)

+
(

a

2

)
C2

M 〈(S+)a−2(S−)a−2(S−)2Ω| [[∆, S−] , S−] |Ω〉

= s2 + aC2
Mλ(a − 1, 1)〈S−Ω| [∆, S−] |Ω〉 (58)

+
(

a

2

)
C2

Mλ(a − 2, 2)〈(S−)2Ω| [[∆, S−] , S−] |Ω〉

= s2 +
a

2Ns
(−4s2) +

(
a

2

)
1

4Ns(2Ns − 1)
16s2

(59)

=
1
N

{
Ns2 − 2sa(2Ns− a)

2Ns − 1

}
. (60)

In line (56) we used (48). (59) is obtained by means of (53,
54) and the identities

〈S−Ω| [∆, S−] |Ω〉 = 〈S−Ω| − (s(3)
1 s−2 + s−1 s

(3)
2 )|Ω〉

= −2〈s−2 Ω|s(3)
1 s−2 |Ω〉 = −2s(s(s + 1) − s(s − 1))

= −4s2 ,

(61)

and

〈(S−)2Ω| [[∆, S−] , S−] |Ω〉 = 〈(S−)2Ω|2s−1 s−2 |Ω〉 (62)

= 4〈s−1 s−2 Ω|s−1 s−2 |Ω〉
= 4(s(s + 1) − s(s − 1))2

= 16s2 .

This completes the proof.
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